[image: image1.jpg][image: image2.jpg]
The Holy Grail:
Cisco IOS Shellcode And 
Exploitation Techniques
Michael Lynn
Internet Security Systems
© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.
[image: image3.jpg][image: image4.jpg][image: image5.jpg]
© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Another Unbreakable System
[image: image6.jpg][image: image7.jpg]

Wide Deployment

Switches


Routers


Access Points


Keys To The Kingdom (MITM)

Control the network traffic


Packet sniff in far off lands


Modify traffic


Break weakly authenticated encryption 

(passwords, etc)

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Why You Should Care
[image: image8.jpg][image: image9.jpg]

Stack Overflows


Some Review: Basic Techniques

Overwrite return address on the stack


Heap Overflows (Pointer Exchange)

Traditionally we use heap chunk linkage


Any linked list will do

Typical linked list delink looks like:
foo->prev->next = foo->next;

foo->next->prev = foo->prev;

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.
[image: image10.jpg][image: image11.jpg]

Routers And Switches Are Just Hardware

It Is Not Possible To Overflow Buffers On 
IOS

There Is No Way To Exploit Buffer 
Overflows On IOS

Every Router Is So Different That An 
Exploit Might Work On One Router But 
Never Another
© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Misconceptions
[image: image12.jpg][image: image13.jpg]

Routers And Switches Run Software On 
General Purpose CPUs

Buffers Do Exist And It Is Not So Rare 
That They Overrun

Exploitation Is Possible

Exploitation Can Be Made Reliable And 
Cross Platform (more on this later)
© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Wrong!


Monolithic

No loadable modules (yet)


All addresses are static


All addresses are different per build


Real Time OS

If you are running you own the CPU (mostly)


We have to exit or yield properly or we will 

crash


Once our code is running we have won any 

race


Stability

IOS tends to favor rebooting over correcting 

errors

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


IOS Basics


Much Better Than Most Platforms

They check heap linkage


They are very aware of integer issues


They almost never use the stack


They have a process to check all heaps


Very old, very well tested code


Bugs Exist Anyways

Green pastures


We can get around some checks


We will use some of these checks 

against them

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


A Word On Code Quality

The Dreaded Check Heaps Process

Walks All Heaps Looking For Bad 
Linkage

Even if our chunk is not freed check heaps 

will detect bad linkage


Is run every 30 to 60 seconds depending on 

load


This Is The Main Reason Heap Overflows 
Can Be Hard
© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Stack Overflows

Rare, but if we find one, its fair game


Heap Overflows

They check next and previous pointers


We either have to beat check heaps or not 

offend it


We must either know the values for the 

previous pointer or we must get around 

this somehow


Monolithic Architecture

For heap overflows we must have exact 

offsets per version (more on this later)

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Rules of Engagement

A Look At IOS Heap Structures

We Can’t Overflow Past Next Pointer

We Can’t Overwrite Magic Number

Magic Number is 0xAB1234BC


We Can’t Overwrite Red Zone

Red Zone value is 0xFD1001DF

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


His Previous Presentations

Blackhat 2002


Defcon X


His Technique

Uncontrolled pointer exchange (more on this 

later)


Flash invalidating


Guessing previous pointer


His Limitations

Flash invalidation trick only works against 

very old routers


Guessing previous pointer values is usually 

infeasible

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Big Ups To FX


Disassembly Ninjitsu

Lots Of Hard Work

Cisco Helps Us Out Some

Built in debugger (sort of)


show mem commands


show context


Forced core dumps


debug all


Finding The IOS Version

CDP


SNMP


Read Only Buffer Overflows

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Overcoming The Obstacles


Use A Core Dump Image


Getting IOS In A Disassembler

This will show you memory contents of the 

system during runtime


Decompress The Firmware Image

Stuffit expander


WinRar


Fixup the ELF header


Be Prepared for IDA To Run Dog Slow
© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Stack Overflows

These just work if you can find them


Heap Overflows

We need a pointer exchange


Its best if we can overwrite something other than 

heap linkage


Hijack any number of callbacks


Using Heap Linkage

We can’t overflow past the next pointer


Maybe we could use FX’s uncontrolled pointer 

exchange method for something useful

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Getting Execution


Overwrite Linked List In Same Chunk

Doesn’t clobber heap chunks


Take control with pointer exchange


Easy and reliable, but somewhat rare


Overwrite Linked List In Another Chunk

We are racing against check heaps


Our chunk must not be freed


We are racing check heaps


Very hard in practice unless we can deal with 

check heaps

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Easy Heap Overflows


Racing Check Heaps

We have between a few seconds and a minute 

to get execution or we’ll be busted by check 

heaps


Sometimes we can trigger the unlink and force 

us to win the race


Sometimes we can’t


Lets Kick Check Heaps In The Nuts

What if we could make check heaps go away


What if we could not let the router crash


This would greatly increase our chances of 

success


Lets take a look at how the system crashes

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Hard Heap Overflows

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Inside The abort() Routine

I Never Liked Check Heaps Anyways

Use Uncontrolled Pointer Exchange To Trick 
System Into Thinking It Is Already Crashing

Router can no longer crash synchronously


Check heaps will eventually be killed due to CPU 

hog watchdog


This Buys You A Few Minutes

The system will still eventually crash on an 

unhandled exception anyways


This Gives The Potential To Exploit Arbitrary 
Heap Overflows

After check heaps is dead it may be possible to use 

uncontrolled pointer exchange to get execution


You can now guess previous pointer values and the 

system can’t crash

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Memory Allocation

malloc


Process Management

CreateThread


exit


TTY Management

allocateTTY


Seting up a tty


Sockets (well, sort of)

TCBCreate


Connect

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Building The Shellcode

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Finding malloc()

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Finding CreateThread()

Using CreateThread()
void *CreateThread(void *entryPoint,

char *name,

int something,

int dunno);

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Finding exit()

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


An Example Of TTY Creation

ttygroup



Using TTY Routines
*getTTYGroup(int twentyOne, io_t *ioStruct);

tty_t

*allocateTTY(ttygroup *group, int one);

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Too Bad, This Is Not Unix, Its Not Even Close

Actually they do have BSD style sockets, they are 

just never used and are not helpful to us


TCB’s

I don’t know what this stands for, and neither did 

the people at Cisco I spoke with


This is the socket like thing we have to use


They seem comparable to sockets, but work in an 

asynchronous way

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


We Need A Socket

Lets See How TCB’s Are Used
© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Another Example

TCB 



Using TCB Routines
*tcp_create_connect1(int zero,

short remotePort,

sockaddr *remoteAddr,

short localPort,

sockaddr *localAddr,

int *error,

int zero);

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Lets Cover Our Tracks

We could flush the logs



A Dead Process Tells No Tales

We could modify the log strings on the heap


We could sabotage the logging functions


Or We Could Just Kill The Logger Daemon

Some messages still appear on reboot, but only 

to console as best I can tell

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Finding Kill

1.
2.
3.
4.
5.
6.
7.
8.
9.


Get Execution
Clean Up What We Broke
Spawn Process
Allocate And Setup TTY
Make Connect-Back TCB
Start Shell
Kill Logger Process
Exit Initial Process
World Domination
© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Shellcode Check List


Yes And No (Mostly No)

Cisco is working on this



Is This The End Of The World

Keep your firmware images up to date and you 

will probably be fine


Because you have to have different offset for 

different firmware versions worms would be very 

difficult to make


But Then Again

Stack overflows do not need to know router 

versions to gain execution


Up coming versions of IOS use “virtual 

processes” this means that offsets will be static 

between firmware versions

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.

Questions?

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Questions?
