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Another Unbreakable System
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
Wide Deployment

Switches


Routers


Access Points


Keys To The Kingdom (MITM)

Control the network traffic


Packet sniff in far off lands


Modify traffic


Break weakly authenticated encryption 

(passwords, etc)
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Why You Should Care
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
Stack Overflows


Some Review: Basic Techniques

Overwrite return address on the stack


Heap Overflows (Pointer Exchange)

Traditionally we use heap chunk linkage


Any linked list will do

Typical linked list delink looks like:
foo->prev->next = foo->next;

foo->next->prev = foo->prev;

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.
[image: image10.jpg]loc_80B18A80:

1
lis
subi
b1

ar.
ble
o
1i
b1
or.
bne

3, ox17

# CODE XREF: sub_80B1863C+4241]

¥h, ((pad_io+0x10008) >> 16)  NERENENEN
¥h, ru, G31CH8 1§ pad_io

get_ttygroup

30, r3
loc_80B18AAC
¥3,7r30
Py, 1
allocateTTy
31, r3
loc_86B18ACS

# not entirely sure what this is, returns something
# to pass in to allocatetty



[image: image11.jpg]# CODE XREF: sub_805B7434+3441j

1 ¥3, 0
addi  rh, sp, Gx14Bevar_30

1i 5, 0

bl | tcp_create # creates some structure used in their socket like

e g S





Routers And Switches Are Just Hardware

It Is Not Possible To Overflow Buffers On 
IOS

There Is No Way To Exploit Buffer 
Overflows On IOS

Every Router Is So Different That An 
Exploit Might Work On One Router But 
Never Another
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Misconceptions
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
Routers And Switches Run Software On 
General Purpose CPUs

Buffers Do Exist And It Is Not So Rare 
That They Overrun

Exploitation Is Possible

Exploitation Can Be Made Reliable And 
Cross Platform (more on this later)
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Wrong!


Monolithic

No loadable modules (yet)


All addresses are static


All addresses are different per build


Real Time OS

If you are running you own the CPU (mostly)


We have to exit or yield properly or we will 

crash


Once our code is running we have won any 

race


Stability

IOS tends to favor rebooting over correcting 

errors
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IOS Basics


Much Better Than Most Platforms

They check heap linkage


They are very aware of integer issues


They almost never use the stack


They have a process to check all heaps


Very old, very well tested code


Bugs Exist Anyways

Green pastures


We can get around some checks


We will use some of these checks 

against them
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A Word On Code Quality

The Dreaded Check Heaps Process

Walks All Heaps Looking For Bad 
Linkage

Even if our chunk is not freed check heaps 

will detect bad linkage


Is run every 30 to 60 seconds depending on 

load


This Is The Main Reason Heap Overflows 
Can Be Hard
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
Stack Overflows

Rare, but if we find one, its fair game


Heap Overflows

They check next and previous pointers


We either have to beat check heaps or not 

offend it


We must either know the values for the 

previous pointer or we must get around 

this somehow


Monolithic Architecture

For heap overflows we must have exact 

offsets per version (more on this later)
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Rules of Engagement

A Look At IOS Heap Structures

We Can’t Overflow Past Next Pointer

We Can’t Overwrite Magic Number

Magic Number is 0xAB1234BC


We Can’t Overwrite Red Zone

Red Zone value is 0xFD1001DF
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
His Previous Presentations

Blackhat 2002


Defcon X


His Technique

Uncontrolled pointer exchange (more on this 

later)


Flash invalidating


Guessing previous pointer


His Limitations

Flash invalidation trick only works against 

very old routers


Guessing previous pointer values is usually 

infeasible
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Big Ups To FX


Disassembly Ninjitsu

Lots Of Hard Work

Cisco Helps Us Out Some

Built in debugger (sort of)


show mem commands


show context


Forced core dumps


debug all


Finding The IOS Version

CDP


SNMP


Read Only Buffer Overflows
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Overcoming The Obstacles


Use A Core Dump Image


Getting IOS In A Disassembler

This will show you memory contents of the 

system during runtime


Decompress The Firmware Image

Stuffit expander


WinRar


Fixup the ELF header


Be Prepared for IDA To Run Dog Slow
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
Stack Overflows

These just work if you can find them


Heap Overflows

We need a pointer exchange


Its best if we can overwrite something other than 

heap linkage


Hijack any number of callbacks


Using Heap Linkage

We can’t overflow past the next pointer


Maybe we could use FX’s uncontrolled pointer 

exchange method for something useful
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Getting Execution


Overwrite Linked List In Same Chunk

Doesn’t clobber heap chunks


Take control with pointer exchange


Easy and reliable, but somewhat rare


Overwrite Linked List In Another Chunk

We are racing against check heaps


Our chunk must not be freed


We are racing check heaps


Very hard in practice unless we can deal with 

check heaps
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Easy Heap Overflows


Racing Check Heaps

We have between a few seconds and a minute 

to get execution or we’ll be busted by check 

heaps


Sometimes we can trigger the unlink and force 

us to win the race


Sometimes we can’t


Lets Kick Check Heaps In The Nuts

What if we could make check heaps go away


What if we could not let the router crash


This would greatly increase our chances of 

success


Lets take a look at how the system crashes
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Hard Heap Overflows
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Inside The abort() Routine

I Never Liked Check Heaps Anyways

Use Uncontrolled Pointer Exchange To Trick 
System Into Thinking It Is Already Crashing

Router can no longer crash synchronously


Check heaps will eventually be killed due to CPU 

hog watchdog


This Buys You A Few Minutes

The system will still eventually crash on an 

unhandled exception anyways


This Gives The Potential To Exploit Arbitrary 
Heap Overflows

After check heaps is dead it may be possible to use 

uncontrolled pointer exchange to get execution


You can now guess previous pointer values and the 

system can’t crash
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
Memory Allocation

malloc


Process Management

CreateThread


exit


TTY Management

allocateTTY


Seting up a tty


Sockets (well, sort of)

TCBCreate


Connect
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Building The Shellcode
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Finding malloc()
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Finding CreateThread()

Using CreateThread()
void *CreateThread(void *entryPoint,

char *name,

int something,

int dunno);
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Finding exit()
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An Example Of TTY Creation

ttygroup



Using TTY Routines
*getTTYGroup(int twentyOne, io_t *ioStruct);

tty_t

*allocateTTY(ttygroup *group, int one);

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.


Too Bad, This Is Not Unix, Its Not Even Close

Actually they do have BSD style sockets, they are 

just never used and are not helpful to us


TCB’s

I don’t know what this stands for, and neither did 

the people at Cisco I spoke with


This is the socket like thing we have to use


They seem comparable to sockets, but work in an 

asynchronous way
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We Need A Socket

Lets See How TCB’s Are Used
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Another Example

TCB 



Using TCB Routines
*tcp_create_connect1(int zero,

short remotePort,

sockaddr *remoteAddr,

short localPort,

sockaddr *localAddr,

int *error,

int zero);
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
Lets Cover Our Tracks

We could flush the logs



A Dead Process Tells No Tales

We could modify the log strings on the heap


We could sabotage the logging functions


Or We Could Just Kill The Logger Daemon

Some messages still appear on reboot, but only 

to console as best I can tell
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Finding Kill

1.
2.
3.
4.
5.
6.
7.
8.
9.


Get Execution
Clean Up What We Broke
Spawn Process
Allocate And Setup TTY
Make Connect-Back TCB
Start Shell
Kill Logger Process
Exit Initial Process
World Domination
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Shellcode Check List


Yes And No (Mostly No)

Cisco is working on this



Is This The End Of The World

Keep your firmware images up to date and you 

will probably be fine


Because you have to have different offset for 

different firmware versions worms would be very 

difficult to make


But Then Again

Stack overflows do not need to know router 

versions to gain execution


Up coming versions of IOS use “virtual 

processes” this means that offsets will be static 

between firmware versions

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.

Questions?
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Questions?
